
1

G52CPP
C++ Programming

Lecture 16

Dr Jason Atkin

http://www.cs.nott.ac.uk/~jaa/cpp/
g52cpp.html

2

Last Lecture

• Casting
– static cast
– dynamic cast
– const cast
– reinterpret cast

• Implicit type conversion

3

How do we report errors?
1. Return an error value from function

– Remember to check return value on each call
– Must have a valid ‘error’ return value
– How do we propagate the error? (return again?)

2. Set a global error code
– Again, have to remember to check it after each call

3. Throw an exception (to report error)
– Requires an exception handling mechanism
– This lecture

4

Exceptions
• Exceptions are ‘throw n’ to report exceptional circumstances

– Similar to being able to return an error value of whatever type is
desired

• You can throw any type of object, fundamental type or pointer as
an exception in C++
– These are different things (pointers != objects)
– The standard class library provides some standard exception

types, all derived from exception class
– It is good practice to throw objects which are of sub-classes of

exception rather than arbitrary types
• You add handler code to catch the exception

• The stack frame is unwound, one function at a time (as if the
functions return ed immediately) until a catch which matches the
type thrown is found
– Like returning from the functions
– Same problems/effects as returning from a function

5

Catching exceptions
• First specify that you want to check for exceptions (try)
• Then call the code which will may raise the exceptions
• Then specify which exceptions you will catch , and what

to do (this can include re-throw ing them)
– Use throw without arguments in a catch clause to rethrow them

try
{

foo();
}
catch (int& i)
{

cout << "int was thrown by foo()" << endl;
}
catch (…)
{

cout << "Any other exception was thrown" << endl;
}

Assume that foo() throws an exception
e.g. throw 1;

or MyException ob; throw ob;

6

The catch clause

• A catch clause will match an exception
of the specified type

• catch clauses are checked in the order in
which they are encountered
– The order of the catch clauses matters!

• Pointers and objects are different
• Exceptions are thrown by value

– Catch by reference or by value would work
– Catch by reference avoids the copy

• char s, short s, int s (etc) are different things
• catch (...) will match ANY exception

7

Exception throw n by new

void foo()
{

while (true)
{

new int[10000];
cout << '.';

}
}

int main()
{

try
{ foo(); }
catch (bad_alloc)
{ cout << "bad_alloc exception thrown" << endl; }
catch (...)
{ cout << “Other exception thrown " << endl; }

}

If memory allocation fails,
an exception of type

bad_alloc is thrown

Catching this exception potentially
allows handling the out of memory

problem, e.g. ‘save and exit’

Loop forever – until it fails

8

Multiple functions
#include <iostream>
using namespace std;
void bar2()
{

switch(rand() % 3)
{
case 0: throw 1.2f;
case 1: throw "string";
case 2: throw new
string("String");
}

}

void bar()
{

try { bar2 (); }
catch(float f)
{

cout << "float" << endl;
}

}

void foo()
{

try { bar (); }
catch(const char* sz)
{

cout << "char*" << endl;
}

}

int main()
{

for (int i=0 ; i<20 ; i++)
{

try { foo (); }
catch(...)
{
cout << "Other" << endl;
}

}
}

bar2() throws
an exception of
a random type

9

The catch clause and sub-classes
• Sub-class objects ARE base class objects

– Because inheritance models the ‘is-a’ relationship
– catch clauses will match sub-class objects

– e.g.:

catch (BaseClass & b) { }

will also catch sub-class objects
catch (BaseClass * b) { }

will also catch sub-class pointers
• Reminder: Pointers and objects are different

– First catch will NOT catch thrown pointers
– Second catch will NOT catch thrown objects

10

Catching Base class objects
struct Base
{

virtual void temp() {}
};

struct Sub1 : public Base
{

void temp() {}
};

struct Sub2 : public Base
{

void temp() {}
};

int test1()
{

try
{

Base b;
throw b;

}

catch (Sub1& b)
{ cout << "Sub1" << endl; }

catch (Base& b)
{ cout << “Base" << endl; }

catch (Sub2& b)
{ cout << "Sub2" << endl; }

catch (...)
{ cout << "Other" << endl; }

}

A

B

C

D

Base class object is thrown

Which catch clause will be used?

11

Answer

• B

• Check catches in order:
– It is NOT a Sub1
– It is a Base

12

Catching Sub1 class objects
struct Base
{

virtual void temp() {}
};

struct Sub1 : public Base
{

void temp() {}
};

struct Sub2 : public Base
{

void temp() {}
};

int test1()
{

try
{

Sub1 s1;
throw s1;

}

catch (Sub1& b)
{ cout << "Sub1" << endl; }

catch (Base& b)
{ cout << “Base" << endl; }

catch (Sub2& b)
{ cout << "Sub2" << endl; }

catch (...)
{ cout << "Other" << endl; }

}

A

B

C

D

Sub-class Sub1 object is thrown

Which catch clause will be used?

13

Answer

• A
• Check catches in order:

– It is a Sub1

14

Catching Sub2 class objects
struct Base
{

virtual void temp() {}
};

struct Sub1 : public Base
{

void temp() {}
};

struct Sub2 : public Base
{

void temp() {}
};

int test1()
{

try
{

Sub2 s2;
throw s2;

}

catch (Sub1& b)
{ cout << "Sub1" << endl; }

catch (Base& b)
{ cout << “Base" << endl; }

catch (Sub2& b)
{ cout << "Sub2" << endl; }

catch (...)
{ cout << "Other" << endl; }

}

A

B

C

D

Sub-class Sub2 object is thrown

Which catch clause will be used?

15

Answer

• B
• Check catches in order:

– It is not a Sub1
– It is a Base (Sub2 objects are Base objects)

• Note: The order here matters
– It gets caught by the Base catch before it gets

to the Sub2 catch
– The compiler may give you a warning here

about the sub-class type exception being
caught by the base class catch

– gcc / g++ will

16

Catching Sub2 class objects
struct Base
{

virtual void temp() {}
};

struct Sub1 : public Base
{

void temp() {}
};

struct Sub2 : public Base
{

void temp() {}
};

int test1()
{

try
{

Sub2* ps2 = new Sub2;
throw ps2;

}

catch (Sub1& b)
{ cout << "Sub1" << endl; }

catch (Base& b)
{ cout << “Base" << endl; }

catch (Sub2& b)
{ cout << "Sub2" << endl; }

catch (...)
{ cout << "Other" << endl; }

}

A

B

C

D

Sub-class Sub2 object is thrown

Which catch clause will be used?

17

Answer

• D
• Check catches in order:

– It is not a Sub1
– It is not a Base
– It is not a Sub2
– … catches all exceptions

• Pointers are not objects
• Objects are not pointers
• Note: References and objects will match

– & Just says whether a copy is made or not

18

Aside: exceptions and throw()
• throw() at the end of the function declaration

limits the exceptions which can be thrown
– It is optional
– In Java, throws <types> is mandatory

• If specified, then all exception types which can
be thrown by function must be specified
– Throwing a different type will terminate the program

• Examples:
void MyFunction(int i) throw();

• Function will not throw exceptions

void MyFunction(int i) throw(int);
• Function will only throw int s as exceptions

void MyFunction(int i) throw(...);
• Function could throw ANY exception

19

Why does C++ not need
‘finally’?

20

What is wrong with this function?

Note: This example has nothing directly to do with exceptions/exception handling, yet

void foo()
{

int* iarray = new int[100];
for (int i=0;i<100;i++)
{

iarray[i] = rand();

if ((iarray[i]%5) == 0)
{

cout << "end " << i;
return;

}

cout << iarray[i] << " ";
}
delete [] iarray;

}

Allocate memory

Free memory

Set each element to a random value

End function if random
number gives specific values

21

Prematurely ending functions
#include <iostream>

using namespace std;

struct MyClass
{

MyClass()
{ cout << "C"; }

~MyClass()
{ cout << "D"; }

};

void bar()
{

throw 1;
}

void foo()
{

MyClass* pOb = new MyClass;
bar();
delete pOb;

}

int main()
{

try
{

foo();
}
catch(...)
{

cout << "E";
}
cout << endl;

}

bar() throwing an
exception will mean
delete is not called
for pOb

Throwing an uncaught exception
will terminate the function, as if
return was used. Objects on the
stack will be destroyed correctly.

22

The problem
// Function which may throw an exception
void bar()
{

throw 1;
}

// This function throws an exception so the
// objects are not destroyed
void foo()
{

// Create objects
MyClass* pOb1 = new MyClass;

// Call function which may throw an exception
bar();

delete pOb1;
}

Note: no ‘throws ’/ ‘throw ’ on the function
If you add a throw() on a function then you are
guaranteeing that it ONLY throws those exceptions
(throw any others and program ends)

Function ends before here
The delete never gets called
Objects not deleted
Memory not freed

23

Code to open and use a file
void version1()

{

FILE* f = fopen("out1.txt", "w");

fprintf(f, "Output text");

// Do something which throws exception or returns?

throw 1;

// Never gets to the close, so file possibly

// not flushed until process ends

printf("Closing file manually\n");

fclose(f);

}

In Java we may put a ‘finally’ clause in for the close, to ensure that the code to
close the file is called, regardless of how the function exits. This is more tricky in

C++ than Java because we don’t know what will throw an exception

24

RAII : Resource Acquisition
Is Initialisation

A useful concept to understand

25

When a function ends…
• Remember back to the discussion of the stack…

– When a function ends, its stack frame is removed
– ALL stack objects (local variables) are destroyed

• Destructors are called for each
– This applies even if the function is ended due to an exception!

• RAII takes advantage of this
– My opinion (only): may be better named in this case:

“Resource Release On Object Destruction” (RROOD?)
• On initialisation, get the resource
• On destruction, release the resource
• Example/summary:

– Create stack object to ‘wrap’ the thing you need to release
– When stack object is destroyed, the thing gets released (e.g. file closed)

• Note: Java has no stack objects and no proper destructors
– only has: “protected void finalize()” : “Before reclaiming the memory

occupied by an object that has a finalizer, the garbage collector will
invoke that object's finalizer.”

26

Simplest(?) file ‘wrapper’ class
class Wrapper
{
public:

FILE* pFile;

// No constructor -
default created

// Key part is the
destructor!
~Wrapper()
{

fclose(pFile);
}

};

void version2a()
{

Wrapper w;
w.pFile = fopen(

"out2a.txt", "w");

fprintf(w.pFile ,
"Output text");

// Do something which
// e.g. throw exception
throw 1;

// Never gets to close
// but we don't care
//fclose(w.pFile);

}

27

A better wrapper class
class MyFile
{

FILE* pFile;

public:
// Constructor
MyFile(
const char* szFileName,
const char* szType = "r")

: pFile (NULL)
{

pFile = fopen(
szFileName, szType);

}

// Conversion operator
operator FILE*()

{ return pFile ; }

// Is file open?
bool isopen()
{ return pFile != NULL; }

// Close file if open
void close()
{

if (pFile != NULL)
fclose(pFile);

pFile = NULL;
}

// Destructor!!!
~MyFile()
{

close();
}

};

28

Using the wrapper

void version2b()
{

// FILE* f=fopen("out2.txt","w");
MyFile file ("out2.txt", "w");

fprintf(file , "Output text");

// Do something which throws
// exception or returns?
throw 1;

// Never gets to the close below
// but we don't care
file .close();

}

class MyFile
{
public:

MyFile(...)
{

… fopen(…);
}

operator FILE*()
{ return pFile; }

void close()
{ … }

~MyFile()
{ close(); }

};

29

Wrapping pointers

30

Wrapping pointers : int *

class Deleter
{
public:

int* pOb; // wrapped ptr

// construct from pointer
Deleter(int *pOb = NULL)
: pOb(pOb)
{ }

// destroy the object
~Deleter()
{

if (pOb)
delete pOb;

}
};

class ArrayDeleter
{
public:

int* pArray;

// construct from pointer
ArrayDeleter(

int* pArray = NULL)
: pArray(pArray)
{ }

// destroy the array
~ArrayDeleter()
{

if (pArray)
delete [] pArray;

}
};

31

Wrapping pointers : templates
template<class T>
class Deleter
{
public:

T* pOb; // wrapped pointer

// construct from pointer
Deleter(T *pOb = NULL)
: pOb(pOb)
{ }

// destroy the object
~Deleter()
{

if (pOb)
delete pOb;

}
};

template<class T>
class ArrayDeleter
{
public:

T* pArray;

// construct from pointer
ArrayDeleter(

T* pArray = NULL)
: pArray(pArray)
{ }

// destroy the array
~ArrayDeleter()
{

if (pArray)
delete [] pArray;

}
};

32

Summary

33

Other Exception Comments

• The destructor is guaranteed to be called for a stack
object when the stack frame is destroyed
– It is the only function which we can guarantee will be called when

an exception occurs

1. Throwing an exception while there is an uncaught
exception will end the program
– Ensure that exceptions cannot be thrown from within a

destructor because the destructor could be called as a result of
an exception, e.g. to destroy objects on the stack

2. Not catch ing a throw n exception will end the program

34

The problem of pointers
• Throwing an exception is similar to a return

– Except that you get the value in a different way
• And it will keep ‘returning’ from functions until caught

• When exceptions are throw n:
– Objects on the stack are destroyed (destructor called)
– Memory allocated dynamically will not be freed
– You need to either create objects on the stack,

or free them yourself – in every return and whenever an
exception is throw n

• e.g. catch exception, delete object, re-throw

• You could wrap the pointers in stack objects
– Destructor for stack object should then call delete /free() on

the wrapped pointer to delete the object/free() the memory
– The auto_ptr template class is designed for this purpose – see

standard class library

35

Exceptions Advice

• Try to catch (and handle) an exception as close
as possible to the place it was generated

• Do not catch an exception if you cannot do
something with it (leave it to your caller)

• If you throw exceptions, prefer to throw standard
class library exceptions, or sub-classes of these
– Choose a meaningful exception

• My suggestion – and ONLY a suggestion:
– There is a risk involved in using exceptions – i.e. less

control over the flow of control, like an implicit return,
so, use exceptions only for exceptional circumstances

Next Lecture

• Operator overloading

• Strings and streams
– Short comments/examples about file access

36

